skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Sarani_Rad, Fatemeh"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract BackgroundEffective diabetes management requires precise glycemic control to prevent both hypoglycemia and hyperglycemia, yet existing machine learning (ML) and reinforcement learning (RL) approaches often fail to balance competing objectives. Traditional RL-based glucose regulation systems primarily focus on single-objective optimization, overlooking factors such as minimizing insulin overuse, reducing glycemic variability, and ensuring patient safety. Furthermore, these approaches typically rely on centralized data processing, which raises privacy concerns due to the sensitive nature of health care data. There is a critical need for a decentralized, privacy-preserving framework that can personalize blood glucose regulation while addressing the multiobjective nature of diabetes management. ObjectiveThis study aimed to develop and validate PRIMO-FRL (Privacy-Preserving Reinforcement Learning for Individualized Multi-Objective Glycemic Management Using Federated Reinforcement Learning), a novel framework that optimizes clinical objectives—maximizing time in range (TIR), reducing hypoglycemia and hyperglycemia, and minimizing glycemic risk—while preserving patient privacy. MethodsWe developed PRIMO-FRL, integrating multiobjective reward shaping to dynamically balance glucose stability, insulin efficiency, and risk reduction. The model was trained and tested using simulated data from 30 simulated patients (10 children, 10 adolescents, and 10 adults) generated with the Food and Drug Administration (FDA)–approved UVA/Padova simulator. A comparative analysis was conducted against state-of-the-art RL and ML models, evaluating performance using metrics such as TIR, hypoglycemia (<70 mg/dL), hyperglycemia (>180 mg/dL), and glycemic risk scores. ResultsThe PRIMO-FRL model achieved a robust overall TIR of 76.54%, with adults demonstrating the highest TIR at 81.48%, followed by children at 77.78% and adolescents at 70.37%. Importantly, the approach eliminated hypoglycemia, with 0.0% spent below 70 mg/dL across all cohorts, significantly outperforming existing methods. Mild hyperglycemia (180-250 mg/dL) was observed in adolescents (29.63%), children (22.22%), and adults (18.52%), with adults exhibiting the best control. Furthermore, the PRIMO-FRL approach consistently reduced glycemic risk scores, demonstrating improved safety and long-term stability in glucose regulation.. ConclusionsOur findings highlight the potential of PRIMO-FRL as a transformative, privacy-preserving approach to personalized glycemic management. By integrating federated RL, this framework eliminates hypoglycemia, improves TIR, and preserves data privacy by decentralizing model training. Unlike traditional centralized approaches that require sharing sensitive health data, PRIMO-FRL leverages federated learning to keep patient data local, significantly reducing privacy risks while enabling adaptive and personalized glucose control. This multiobjective optimization strategy offers a scalable, secure, and clinically viable solution for real-world diabetes care. The ability to train personalized models across diverse populations without exposing raw data makes PRIMO-FRL well-suited for deployment in privacy-sensitive health care environments. These results pave the way for future clinical adoption, demonstrating the potential of privacy-preserving artificial intelligence in optimizing glycemic regulation while maintaining security, adaptability, and personalization. 
    more » « less
    Free, publicly-accessible full text available July 1, 2026
  2. Background/Objective: Nutritionists play a crucial role in guiding individuals toward healthier lifestyles through personalized meal planning; however, this task involves navigating a complex web of factors, including health conditions, dietary restrictions, cultural preferences, and socioeconomic constraints. The Analytic Hierarchy Process (AHP) offers a valuable framework for structuring these multi-faceted decisions but inconsistencies can hinder its effectiveness in pairwise comparisons. Methods: This paper proposes a novel hybrid Particle Swarm Optimization–Simulated Annealing (PSO-SA) algorithm to refine inconsistent AHP weight matrices, ensuring a consistent and accurate representation of the nutritionist’s expertise and client preferences. Our approach merges PSO’s global search capabilities with SA’s local search precision, striking an optimal balance between exploration and exploitation. Results: We demonstrate the practical utility of our algorithm through real-world use cases involving personalized meal planning for individuals with specific dietary needs and preferences. Results showcase the algorithm’s efficiency in achieving consistency and surpassing standard PSO accuracy. Conclusion: By integrating the PSO-SA algorithm into a mobile app, we empower nutritionists with an advanced decision-making tool for creating tailored meal plans that promote healthier dietary choices and improved client outcomes. This research represents a significant advancement in multi-criteria decision-making for nutrition, offering a robust solution to the inconsistency challenge in AHP and paving the way for more effective and personalized dietary interventions. 
    more » « less
  3. Diabetes management requires constant monitoring and individualized adjustments. This study proposes a novel approach that leverages digital twins and personal health knowledge graphs (PHKGs) to revolutionize diabetes care. Our key contribution lies in developing a real-time, patient-centric digital twin framework built on PHKGs. This framework integrates data from diverse sources, adhering to HL7 standards and enabling seamless information access and exchange while ensuring high levels of accuracy in data representation and health insights. PHKGs offer a flexible and efficient format that supports various applications. As new knowledge about the patient becomes available, the PHKG can be easily extended to incorporate it, enhancing the precision and accuracy of the care provided. This dynamic approach fosters continuous improvement and facilitates the development of new applications. As a proof of concept, we have demonstrated the versatility of our digital twins by applying it to different use cases in diabetes management. These include predicting glucose levels, optimizing insulin dosage, providing personalized lifestyle recommendations, and visualizing health data. By enabling real-time, patient-specific care, this research paves the way for more precise and personalized healthcare interventions, potentially improving long-term diabetes management outcomes. 
    more » « less
  4. Eating, central to human existence, is influenced by a myriad of factors, including nutrition, health, personal taste, cultural background, and flavor preferences. The challenge of devising personalized meal plans that effectively encompass these dimensions is formidable. A crucial shortfall in many existing meal-planning systems is poor user adherence, often stemming from a disconnect between the plan and the user’s lifestyle, preferences, or unseen eating patterns. Our study introduces a pioneering algorithm, CFRL, which melds reinforcement learning (RL) with collaborative filtering (CF) in a unique synergy. This algorithm not only addresses nutritional and health considerations but also dynamically adapts to and uncovers latent user eating habits, thereby significantly enhancing user acceptance and adherence. CFRL utilizes Markov decision processes (MDPs) for interactive meal recommendations and incorporates a CF-based MDP framework to align with broader user preferences, translated into a shared latent vector space. Central to CFRL is its innovative reward-shaping mechanism, rooted in multi-criteria decision-making that includes user ratings, preferences, and nutritional data. This results in versatile, user-specific meal plans. Our comparative analysis with four baseline methods showcases CFRL’s superior performance in key metrics like user satisfaction and nutritional adequacy. This research underscores the effectiveness of combining RL and CF in personalized meal planning, marking a substantial advancement over traditional approaches. 
    more » « less